Kitaev Model and

 MajoranasSom Phene(15D110001)

Adway Gupta(175120034)

Overview

- Majoranas as a transformation
-1-D Kitaev Hamiltonian
- Kitaev Energies and Topology
- Applications
-2-D Kitaev on a Honeycomb Lattice

Majoranas

Imagine if we have a regular set of fermionic operators C and C^{\dagger} which we transform into a different set according to the rules $C^{\dagger}=\frac{1}{2}\left(\gamma_{1}+i \gamma_{2}\right)$ and $C=\frac{1}{2}\left(\gamma_{1}-i \gamma_{2}\right)$

$$
\left\{\gamma_{1}, \gamma_{2}\right\}=0, \gamma_{1}^{2}=0, \gamma_{2}^{2}=1
$$

no unpaired Majoranas

$$
H=(i / 2) \mu \sum_{n=1}^{N} \gamma_{2 n-1} \gamma_{2 n} .
$$

Kitaev 1-D Chain

- Hamiltonian in terms of Majorana Operators
- Simple case $\mu=0, t=\Delta$

$$
\begin{aligned}
\mathcal{H}_{\text {chain }} & =-t \sum_{i=1}^{N-1}\left(c_{i}^{\dagger} c_{i+1}+c_{i} c_{i+1}+c_{i+1}^{\dagger} c_{i}+c_{i+1}^{\dagger} c_{i}^{\dagger}\right) \quad \gamma_{i, 2}=c_{i}^{\dagger}+c_{i} \\
& =-t \sum_{i=1}^{N-1}\left(\left(c_{i}^{\dagger}+c_{i}\right) c_{i+1}+c_{i+1}^{\dagger}\left(c_{i}+c_{i}^{\dagger}\right)\right)=-t \sum_{i=1}^{N-1}\left(\gamma_{i, 2} c_{i+1}+c_{i+1}^{\dagger} \gamma_{i, 2}\right) \\
& =-\frac{t}{2} \sum_{i=1}^{N-1}\left(\gamma_{i, 2} \gamma_{i+1,2}+i \gamma_{i, 2} \gamma_{i+1,1}+\gamma_{i+1,2} \gamma_{i, 2}-i \gamma_{i+1,1} \gamma_{i, 2}\right)
\end{aligned}
$$

- Recall anticommutation $\left\{\gamma_{i, k}, \gamma_{j, \ell}\right\}=2 \delta_{i j} \delta_{k \ell}$

$$
\mathcal{H}_{\text {chain }}=-\frac{t}{2} \sum_{i=1}^{N-1}\left(\gamma_{i, 2} \gamma_{i+1,2}+i \gamma_{i, 2} \gamma_{i+1,1}-\gamma_{i, 2} \gamma_{i+1,2}+i \gamma_{i, 2} \gamma_{i+1,1}\right)=-i t \sum_{i=1}^{N-1} \gamma_{i, 2} \gamma_{i+1,1}
$$

Kitaev Hamiltonian

The most general Hamiltonian is:

If we now have,

$$
\begin{gathered}
C \equiv\left(c_{1}, \ldots, c_{n}, c_{1}^{\dagger}, \ldots, c_{n}^{\dagger}\right) \\
\mathcal{H}=C^{\dagger} H_{B d G} C
\end{gathered}
$$

Then,

$$
H_{B d G}=-\sum_{n} \mu \tau_{z}|n\rangle\langle n|-\sum_{n}\left[\left(t \tau_{z}+i \Delta \tau_{y}\right)|n\rangle\langle n+1|+\text { h.c. }\right] .
$$

This is the Boguliubov de-Gennes Trick!

Fourier Space

$$
\begin{gathered}
|k\rangle=(N)^{-1 / 2} \sum_{n=1}^{N} e^{-i k n}|n\rangle \\
H(k) \equiv\langle k| H_{\mathrm{BdG}}|k\rangle=(-2 t \cos k-\mu) \tau_{z}+2 \Delta \sin k \tau_{y}
\end{gathered}
$$

The eigenspectra is thus:

$$
E(k)= \pm \sqrt{(2 t \cos k+\mu)^{2}+4 \Delta^{2} \sin ^{2} k} .
$$

$\mu=0, t=\delta=1$

$\mu=1, t=\delta=0$

$$
\mu= \pm 2, t=\delta=1
$$

$\mu= \pm 2, t=\delta=1$
Crossing! Topology revealed

Applications

- Robust Information Storage
- Quantum Hall system with filling fraction $5 / 2$
- Core of Half vortices (p-wave superconductors Sr2RuO4)

Read and Green, Phys. Rev. B61 (2000) 10267;
Ivanov, Phys. Rev. Lett. 86 (2001) 268;
Stern, von Oppen and Mariani, Phys. Rev. B 70 (2004) 205338;
Tewari, Zhang, Das Sarma, Nayak and Lee, Phys. Rev. Lett. 100 (2008) 027001

Quantum Statistics

- Abelian: Single component wavefunction

Phase addition is commutative

- Non-Abelian: N-component wavefunction

Unitary matrix multiplication is not commutative

Kitaev Model (2D Honeycomb Lattice)

- Representations
- Jordan Wigner Transformation
- Conserved Quantities
- Quantum Statistics (Fusion rules)
- Spin Correlation functions

Feng, Zhang and Xiang, Phys. Rev. Lett. 98 (2007) 087204; Lee, Zhang and Xiang, Phys. Rev. Lett. 99 (2007) 196805; Chen and Nussinov, J. Phys. A41 (2008) 075001
(b)

	Topologically nontrivial		Trivial
0	$1 / 3$		$1 / 2$

Kitaev Model

Ground state can be rigorously solved
A. Kitaev, Ann Phys 321, 2 (2006)

Jordan Wigner Transformation

Conserved Quantities

$$
W=\sigma_{1}^{y} \sigma_{2}^{z} \sigma_{3}^{x} \sigma_{4}^{y} \sigma_{5}^{z} \sigma_{6}^{x}
$$

(b)

Diptiman Sen, IISc Bangalore

Non Abelian Statistics and braiding

(f)

