MM 433 Manufacturing Process Seminar

Manufacturing of Transistors

Som Phene (15D110001)
Kedar Bahulkar (15D110008)
Onas Malhotra (15D110019)

Outline

Intro to Transistor technology- Kedar
Fabrication and Developments- Som
Market Analysis and Future- Onas

Discrete Circuit

Integrated circuit

There's Plenty of Room at the Bottom

Richard P - Feynman

Iirmagine experimental physicists must often look with field ${ }^{\text {bik }}$ at men like Kamerlingh Omnes, who discovered a and in which omperature, which secms Such a man is then a leader and has some temporary momopoly in a scientific adventure. Percy Bridgman, in designing a waty to obtain-higher pressures, opemed up another new fielld and was able to rmove into it and ro lead us all along. The development of ever higher vacuum was a continuing developrteent of the same kirnd

I would like to describe a field, in which little has been done, but in which an emormous amours can be dome in principle. This field is not quite the same as the others in that it will mot tell us much of fundamental physics fin the sense of, What are the strange particles? ? but it is more much of great interest abour the stramge phenomiena that occur in complex sitautions. Furthermone, a point that is most important is that it would have an enormous mumber of technical applications

What I want to talk about is the problem of mamipulating and comtrolling things on a srmall scale.
As soon as I mention this. people tell me about miniaturization, and how far it has progressed today, They tell moe about electric motors that are the size of the maill on your small finger. Arnd there is a device on the market, they tell me, by which you can write the Lord's Prayer on the head of a plin. But that s nothing: that s the most It is a srapeeringiy small world that is below. In the yeat It is a seaggeringly small world that is below. In the yeat why it was not uncil the vear 1960 that anybody began seriously to move in this direction

Why cammor we wrive she everive 24 volumes of the En-Cy-lognaedia Brivearmical on the head of a pin?

Let's see what would be involved. The head of a pin is a sixteenth of an inch across. If you magnify it by is 000 diameters. the area of the head of the pin is then equal to the area of will the pages of the Encyclopanedia Britamnica Therefore, all ix is necessary to do is to reduce in size all the writing in the Encycloppaedia by 25000 timnes. Is that possible? The resolving power of the eye is about $1 / 120$ of an inch-that is roughly the diameter of one of the little

ARENES EdUnor's More: This manmascript addresses mamy curremt reseanch
 cember 26. 1959 , at the ammual minceting of the American Physikel Soctery at she Califormia Imstitate of TechnoloEy, and was pebtishod as an chapee in the Reinhold Publishing Corpmotion book. Mrimiaraurizonion. Howace D. New York. NY nowoos.
Plashodema. CA Number 910s621
dots on the fine half-torne reprodiuctions in the Encyclopaedia. This, when you demagnify it by 23 o00 times, is still 80 angstroms in diameter- 32 atoms across. in an ordinary metal. In other words, one of those does still would contain in its area 1000 atoms. So, each dot can easily be adjusted in size as required by the photoengraving. and there is mo question that there is enougtn room on the head of a pin to put all of the Encyclopaedia Britannica

Furthermore, it can be read if it is so. written. Let's imagine that it is written in raised letters of metal; that is. letters of metal shar are actually $1 / 25000$ of their ondinaty size. How wound we read it?
If we had something written in such a way. we could read it usimg techniques in common use today. (They will undoubtedly find a better way when we do actually have it written. but to make my point conservatively I shall just take techniques we know tociay -) We would press the metal into a plastic mmaterial amd matke a molid of it, then peel the plastic off very carefully, evaporate silica into the plastic to get a very thin film. then shadiow it by evaporating gold at an angle agatinst the silica so that all the litrle letters will appear clearly, dissolve the plastic away from the silica film, and then look through it with an elecmon microscope?

There is mo question that if the thing were reduced by 25000 timnes in the form of raiscd letters on the pin, it is mo question that whe woad it soday. Furthermore, there is mo question that we would just meed to press the same metal plate again into plastic and we would have another oopy.

HON DE WE WRITE SMEAEI.

The next question is: How do we write it? wVe have no stanctard rechnique to do this now. Hut let me argue that it is not as difficult as it first appears to be. We can reverse the lenses of the electron microscope in onder to demagmify as well as magnify - A source of ions. sent through the microscope lenses in reverse. could be focused to at very small spot. We could write with that spot like wass in lines, and havimg an adiustment which determimes the armount of material which is going to be deposited as we scan in lines.

This method might be very slow because of space charge limitations. There will be more rapid methods- We could first makke, perhaps by some photo process, a screen which has tholes in it in the form of the letters. Then we ions through the holes; then we could again use our sys-

- First Intel computer chip : Intel 4004
- Consists of 2,300 transistors
- Current Zen microarchitecture : 32 core AMD Epyc
- Consists of 19,200,000,000 transistors (Nineteen billion)

Small Scale Integration (SSI)
Medium Scale Integration (MSI)
Large Scale Integration (LSI)
Very large Scale Integration (VLSI)
Ultra Large Scale Integration (ULSI)

Upto 100

100 to 1000

1000 to 20 K

20K to 10,00,000
$10,00,000$ to $1,00,00,000$
before buyinuld any price: any hearingtone

$$
\begin{aligned}
& \text { Frances How HEARING CENIONt } \\
& \text { This Tues., Kokomo }
\end{aligned}
$$

$$
\begin{aligned}
& \text { This Tues., Oel, Kokomo CENTER } \\
& \text { J. } \mathrm{O} \text {. oth }
\end{aligned}
$$

$$
\begin{aligned}
& \text { J. R. MYLET, Cot oth }- \text { Howrs: }
\end{aligned}
$$

Sonatane, Consultont In charge

Sonotone 1010
 \%athereelared finest
 For Guality Engineering Aword.
 judged the worla, nirst or ormance: soading audio of - on andansiator x
 مonorone: engineers counts! Hearing
 "In tarms of its aneers said abore's pot Afd is
 has befioncy dosign, constuction ius been selein use, this instruction iudges os the eted by thinstrument Here's as the finest in Jo division 1010 TRA troof that the fista." designed bistor hes sonotonv performo better-meanlingald is that you bettert made better-

....First commercial device to use the transistor.

Current Knowledge

Successive Ordinal Stages : -

1. Zero-Order approximation is the first attempt at a solution to achieve the overall goal.

- Zero order system stage
- Zero order circuit stage
- Zero order device stage
- Zero order chemical physical stage

2. First-Order solution

- New refinements \& even new circuits may be indicated. Alternative circuits for a given function may be considered
- Meeting first order requirements with reasonable goals.

Design, Fabrication \& Test

Phase I: Formulation of the requirements of the characteristics of Transistor

Essential for a device engineer effect a compromise between what is optimally desired by the circuit engineer and what is achievable with good reproducibility, reliability and reasonable yields.

Design, Fabrication \& Test

Phase II: Analysis of Transistor Structures

- By structure, I mean variables which can be nominally under the control of design \& production engineers.
- Examples of structures : junction spacing. Resistivity,geometry and minority-carrier lifetime of a semiconductor

$Z=Z(S 1, S 2, S 3 \ldots S n, b 1, b 2, b 3$. bn $)$

Z represent open circuit impedance of transistor Variables S_{i} represent all the structures Variables bi represent d-c biasing currents \& voltages at which the device may be operated.

Outline

- npn Bipolar Junction Technology
- Modifications to the standard npn BJT technology

Major Processing Steps for a Junction Isolated BJT Technology

Start with a p substrate.

1. Implantation of the buried $\mathrm{n}+$ layer
2. Growth of the epitaxial layer (MBE/MOCVD)
3. p+ isolation diffusion
4. Base p-type diffusion
5. Emitter n+ diffusion
6. p+ ohmic contact
7. Contact etching
8. Metal deposition and etching
9. Passivation and bond pad opening

Implantation of the Buried Layer (Mask Step 1)

Objective: the buried layer is to reduce the collector resistance.

Epitaxial Layer (No Mask Required)

Objective: To provide the proper n-type doping in which to build the npn BJT

p+ isolation diffusion (Mask Step 2)

Objective: of this step is to surround (isolate) the npn BJT by a p+ diffusion. These regions also permit contact to the substrate from the surface

Base p-type diffusion (Mask Step 3)

The step provides the p-type base for the npn BJT

Emitter n+ diffusion (Mask Step 4)

This step implements the n+ emitter of the npn BJT and the ohmic contact to the collector

p+ ohmic contact (Mask Step 5)

This step permits ohmic contact to the base region if it is not doped sufficiently high

Contact etching (Mask Step 6)

This step opens up the areas in the dielectric area which metal will contact

Metal deposition and etching (Mask Step 7)

In this step, the metal is deposited over the entire wafer and removed where it is not wanted.

Passivation (Mask Step 8)

Covering the entire wafer with glass and opening the area over bond pads (which requires another mask)

Stochastic Processes

Advances by
Prof. Udayan Ganguly, EE dept, IITB: Strategic Semiconductors
Prof. Punit Parmananda, Physics dept, IITB : regular patterns by pitting corrosion

Fabrication Animation

Indian Transistor market

Sl. No.	Heads	Description
1	Overall Indian Market Size in FY 2009-10	USD 83 Million
2	Ratio of Imports: Indian Manufacturing in FY 2009-10	$80: 20$
3	Growth in FY 2009-10	1%
4	Export in FY 2009-10	USD 3 Million 5$\|$Market Size by type of Transistor Junction Transistor (BJT), Field Effect Transistor (FET), Metal Oxide Field Effect Transistor (MOSFET), Insulated Gate Bipolar Transistor (IGBT)
6	Key Application Segments	Consumer durables \& Lighting
7	Estimated Growth in FY 2010-11	12\%
8	Estimated Ratio of Imports : Indian Manufacturing in FY 2010-11	70.30

Current and Past Trends

The overall market size for transistors in India is estimated at USD 83 million for the FY 2009-10 with imports accounting for 80% of the total market. The transistors are largely imported from China \& Taiwan. In addition, a considerable proportion of transistors used in automotive and power electronics are imported from Europe owing to its high quality

Major electronic hubs in India

Growth of Indian Electronics components market

Global Analysis

- India's electronics market is one of the largest in the world in terms of consumption, is predicted to grow to approximately US $\$ 400$ billion by 2020 from \$69.6 billion in 2012
- Report of the NITI Aayog, electronics industry's contribution to GDP is only 1.7% in India, compared to 15.5% in Taiwan, 15.1% in South Korea and 12.7% in China.

Salient Aspects of Indian Transistor Industry

- Continental Devices India Limited and Bharat Electronics limited are the two leading manufacturers of transistors in India
- The Indian transistor market is estimated to grow at a CAGR of 11% for the next 3 years and the market size in FY2011-12 is expected to reach USD 104 Million
- Growing demand in the automotive and consumer durable market are the two key factors that is expected to drive the transistor industry, thus positively affecting its growth rate.
- Non Availability of raw materials like molding compound, silicone wafer, lead frames etc., high import duties on raw material and competitive component pricing from players in China are cited as the key restraints for the transistor manufacturing industry in India

Developments and Improvements

Single transistor 7 nm scale devices were first produced by researchers in the early 2000s.
In 2002, IBM produced a 6 nm transistor.
In 2003, NEC produced a 5 nm transistor.

In 2015, IMEC and Cadence had fabricated 5 nm test chips. The fabricated test chips are not fully functional devices but rather are to evaluate patterning of interconnect layers.

In 2015, Intel described a lateral nanowire (or gate-all-around) FET concept for the 5-nm node.
In 2017, IBM revealed that they had created 5 nm silicon chips, using silicon nanosheets in a gate-all-around configuration (GAAFET), a break from the usual FinFET design.

Research Improvements

In 2016, researchers at Berkeley Lab created a transistor with a working 1-nanometer gate. The field-effect transistor utilized MoS_{2} as the channel material, while a carbon nanotube was used to invert the channel. The effective channel length is approximately 1 nm . However, the drain to source pitch was much bigger, with micrometre size.

References

https://en.wikipedia.org/wiki/Electronics_and_semiconductor_manufacturing_industry_in_India
http://meity.gov.in/writereaddata/files/ELCOMOS_Report_23412.pdf
https://www.electrical4u.com/transistor-manufacturing-techniques/
https://www.tutorialspoint.com/vlsi_design/vlsi_design_digital_system.htm
 2014. Retrieved November 9, 2015.
"8 Things You Should Know About Water \& Semiconductors | China Water Risk". chinawaterrisk.org. Retrieved 2017-09-10.
"Top 10 Worldwide Semiconductor Sales Leaders - Q1 2017 - AnySilicon". AnySilicon. 2017-05-09. Retrieved 2017-11-19.
"A Survey Of Architectural Techniques for Managing Process Variation", ACM Computing Surveys, 2015
"Introduction to Semiconductor Technology" (PDF). p. 6. |firstl= missing |lastl= in Authors list (help)
"Wafer Backgrind".

CNET. "Why tech pollution's going global." April 25, 2002. Retrieved November 9, 2015.

Questions

