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OBJECTIVE OF THIS STUDY-

There is obvious need to describe the complex shapes of curved lineations and surfaces, and the 
attractiveness of accomplishing this in a quantitative manner. Therefore it is important to study the 
principles and methods of differential geometry that appear to have the greatest potential for 
application to structural geology. Differential geometry provides the mathematical constructs to 
characterize three-dimensional structures via well-defined geometric parameters that can be used in 
continuum mechanical models of tectonic processes, to describe the departure of geological 
lineations from a straight line and geological surfaces from a plane.



TOPICS COVERED:

PHASE 1

It consisted of learning basic terms and mathematical tools required for further understanding. It 
includes the following:

1. Vectors – it  is used to describe physical quantity which has both a magnitude and direction 
associated with it. Various operations associated with vectors are cross product, dot product, 
scalar triple product, vector triple product.

2. Function – assignment which assigns to each element of a set A a unique element of a set B.  
f: A→B. 

3. Inner product - An inner product is a generalization of the dot product. In a vector space, it is 
a way to multiply vectors together, with the result of this multiplication being a scalar. 
More precisely, for a real vector space, an inner product  satisfies the following four 
properties. Let , , and  be vectors and  be a scalar, then:

1. .

2. .

3. . 

4.  and equal if and only if .

Inner product space: A vector space together with an inner product on it is called an inner product 
space. 

Examples of inner product spaces include:

1. The real numbers , where the inner product is given by

(1)

2. The Euclidean space , where the inner product is given by the dot product

(2)

3. The vector space of real functions whose domain is an closed interval  with inner product

Metric space – built on the concept of “distance” between objects it is the generalization of the familiar 
distance between two points on the real line. METRIC is a real valued function.

d(.,.) : X*X → R
A set X with an associated metric is called Metric space. 

Tensor- a mathematical object analogous to but more general than a vector, represented by an array 



of components that are functions of the coordinates of a space.  Examples to understand:

1. Suppose that F is an operator which transforms every vector into its mirror image with respect to a 
given plane. F transforms a vector into another vector and the transformation is linear. Hence F is a 
second order tensor.
2. The combination (ux) linearly transforms a vector into another vector, hence it is second order 
tensor.

A thumb rule being followed here is-

First order tesor maps first order tensor to give zeroth order tensor(scalar).
Second order tensor maps first order tensor to give first order tensor.
Third order tensor maps first order tensor to give second order tensor.

Dyad – tensor product itself is a tensor of order 2 called dyad.

a.b- scalar(zeroth order tensor)
axb- vector(first order tensor)

  - dyad (second order tensor)

Manifold – a collection of points forming a certain kind of set, such as those of a topologically closed 
surfaces or an analogue of this in 3 or more dimension.

Submanifold – a subset M of RN is a ‘k’- dimensional submanifold if for every point x in M there exists 
a neighbourhood V of x in RN, an open set U subset Rk and a smooth map f: U → RN such that f is 
continuous and one-one , onto M V and inverse also continuous.

PHASE 2

2.1 CONCEPT AND DESCRIPTION OF LINEATIONS

A primary task for structural geologists is to describe and characterize such surfaces and this maybe 
accomplished in a mathematically rigorous and complete manner using concepts and tools from 
differential geometry, the branch of mathematics that brings power to vector calculus to geometry.
This phase includes understanding lineations using rigorous differential calculus; also some basic 
geology terms as follows: 

1. Foliation – refers to the repetitive layering in metamorphic rocks due to shearing forces or 
differential pressure. Each layer can be as thin as sheet of paper or a meter in thickness.

2. Lineation – any linear feature or element in rock. Lineations are the one dimensional 
counterpart of foliations.

3. Stereographic projections – particular mapping defined on entire space (except projection 
point) that projects a sphere onto a plane. Wherever defined it is bijective and smooth and 
preserves angles at which curves meet. It is neither isometric nor area-preserving.

4. Plunge – vertical angle between horizontal and axis(line of maximum elongation of a feature). 
Plunge measured along the axis of a fold whereas dip is measured along the limbs. It is used 
to describe tilt of lines and dip for planes.

5. Dip – slope of a geological surface. Direction of dip is compass direction towards which the 
plane slopes.

6. Slickenline – term employed for fracture surfaces in rocks that are polished and/or coated with 
secondary mineral growths and that commonly bear a linear structure. They are shear 
fractures.

TYPE OF LINEATIONS

Some lineations are defined by the intersection of two geological surfaces that separate one volume 
of rock from another. For example, a fault (F-F’) separates the relatively young and undeformed rocks 



of a sedimentary basin from the older and more deformed sedimentary or metamorphic rocks of the 
adjacent mountain range. An igneous contact (I-I’) separates older deformed sedimentary or 
metamorphic rocks from the younger rocks of an igneous intrusion. An angular unconformity (U-U’) 
separates older sedimentary or metamorphic rocks from the overlying sedimentary strata. 

   

Fig 2.1: Two distinct rock volumes separated across geological surfaces including: (a) a fault, F–F’; (b) an 
igneous contact, I–I’; and (c) an angular unconformity, U–U’. Intersections of sedimentary or metamorphic layers 
with these surfaces define discrete lineations.

Consider two roughly planar and continuous geological surfaces, say an igneous contact and an 
unconformity that intersect one another. To the extent that the surfaces are planar, the intersection 
defines a straight line. At points along the intersection the attitudes, measured as the plunge direction 
and plunge, would be approximately equal and the resulting points would plot in a very tight cluster on 
a stereogram. The type of lineation we have just described is called a discrete lineation because it is 
made up of the set of points common to two discrete surfaces. Discrete lineations defined by 
intersections of geological surfaces- straight lineation at intersection of two planar surfaces and 
curved lineation at intersection of curved surfaces. 

 

Fig 2.2: Discrete lineations defined by intersections of geological surfaces. (a) Straight lineation at intersection of 
two planar surfaces. (b) Curved lineation at intersection of curved surfaces. 



If one could observe the entire fault surface or igneous contact surface, we suggest that the lineations 
would cover much if not all of these surfaces. This type of lineation is called a superficial lineation 
because it is only found on a discrete surface. 

Where two roughly planar foliations with different attitudes exist in the same rock mass, say lithologic 
layering and a set of fractures, the mutual intersections define a penetrative lineation that permeates 
the rock mass . To the extent that both foliations are planar, the intersections define straight 
lineations.

PARAMETRIC REPRESENTATION OF CURVES

The spatial continuity of the set of points composing a curve is achieved by defining c as a continuous 
function. Because c is a vector quantity these functions are called vector functions. Curves in three-
dimensional Euclidean space are defined in terms of vector functions of a single real variable, t, such 
that:

The three scalar functions (cx(t), cy(t), cy(t)) are the components of the vector function with respect to
the base vectors (ex, ey, ez). These functions, along with the base vectors, determine the position
vectors for all points on the curve: as t varies smoothly from one value to another, the points trace out 
the curve. The vector equation written above is called the parametric representation of the curve,
and the real variable t is an arbitrary parameter for this representation. 

Lineations are reported that lie on surfaces or within layers of sedimentary or metamorphic rock that 
approximate a cylindrical fold. Folds are termed cylindrical if a straight line moving parallel to itself can 
generate the surfaces of the surfaces of the layers. Straight line generator called fold-axis.

UNIT TANGENT VECTOR

Local orientation of a curvilinear structure at the exposure is measured as the orientation of the line 
element that is tangential to the lineation.

consider the difference between the position vectors for two points on the curve, say s and s+▲. 

Fig 2.3: Diagrams to define unit tangent vector t. (a) Difference between two position vectors, c(s+▲s) and c(s), 
for curve defines vector parallel to the secant line. (b) In the limit, as the arc length, ▲s, goes to zero the secant 
line is parallel to the tangent line.



Dividing this difference by the arc length, ▲s, and taking the limit as this length goes to zero, we are 
left with the definition of the derivative of the vector function c with respect to the arc length▲s.

In the limit, as ▲s goes to zero the secant becomes parallel to the curve and of the same length as 
the arc. Therefore, this derivative is the unit tangent vector, t(s), at the point c(s).

THE CURVATURE VECTOR AND SCALAR CURVATURE

One of the two fundamental properties that uniquely determine the shape of the curve is curvature. 
The curvature vector, k, is defined for a natural representation of a curve, c(s), as the derivative of the 
unit tangent vector with respect to the natural parameter s.

The curvature vector is directed away from the curve on its concave side. The curvature vector points 
in the direction that the curve is turning.

The magnitude of the curvature vector , |k(s)|=k(s), a quantity known as the scalar curvature.

The scalar curvature is equivalent to the spatial rate of change of the orientation of the unit tangent 
vector with arc length along the curve. The scalar curvature, k(s), is called an intrinsic property of a 
curve because it is one of two quantities that uniquely defines the shape of a curve. Where the 
orientation of the unit tangent vector changes more rapidly with position along the curve, the curvature 
is greater. A point on the curve where the curvature is zero is called an inflection point.

 

Fig 2.4: Diagrams to define unit principal normal vector, n. (a) Curve with curvature vectors, k(s). (b) Same curve 
with unit principal normal vectors, n(s).

THE UNIT PRINCIPAL NORMAL VECTOR AND BINORMAL VECTOR

In the interest of working with a geometric quantity that is less erratic in both magnitude and direction, 
a unit vector is defined as parallel to the curvature vector, but directed to remain continuous along the 
curve.

The choice of sign in the numerator is used to keep this normal vector from switching direction 
arbitrarily from one side of the curve to the other at points of inflection. 



In order to identify the second property that uniquely describes curves we again consider the natural 
parametric representation of a curve, c(s), and define a unit vector, b(s), called the unit binormal 
vector, which is normal to the plane containing the unit tangent vector, t(s), and the unit principal 
normal vector, n(s):

The three unit vectors [t(s), n(s), b(s)] form the so called moving trihedron for the curve, which can be 
thought of as traveling along the curve with change in arc length, s.

Fig 2.5: diagram showing trihedron for the curve. 

THE SCALAR TORSION

The unit binormal vector is used to define the second intrinsic geometric property of curves, namely 
the torsion. It is defined as follows-

The torsion is a measure of the change in orientation of the binormal vector, b, with arc length, s, but 
only that part of the change in orientation that projects onto the plane normal to the tangent vector, t. 
The torsion describes the component of rotation of the binormal vector about the tangent line with 
change in position along the curve. The torsion is called an intrinsic property of a curve because it 
serves, along with the scalar curvature, to define the shape of the curve uniquely.

To apply the concepts of curved lines from differential geometry to curvilinear structures observed at 
exposure, lineations must be sufficiently continuous so that the tangent, normal, and binormal vector 
functions and their first derivatives with respect to the natural parameter can be defined.

2.2 THE CONCEPT AND DESCRIPTION OF CURVED SURFACES

To make the appropriate deductions about the physical processes involved in the formation of faults, 
igneous contacts, unconformities, and other discrete geological surfaces one must quantitatively 
characterize the shapes of these surfaces.

PARAMETRIC REPRESENTATIONS OF CURVED SURFACES

A curved surface is defined as a continuous vector function of two scalar variables (u, v), called the 
parameters of the surface, such that s=s(u, v). The two parameters may be thought of as the 
coordinates of points on a plane, called the parameter plane, and those points map onto the surface 



according to the vector function s(u, v). As the two parameters vary, the heads of the successive 
position vectors sweep out the curved surface in three-dimensional space.

Fig 2.6: Parametric representation of a curved surface (a) Two-dimensional parameter plane with parameters u 
and v. Lines u=uo and v=vo in the parameter plane map to v- and u-parameter curves on the surface. (b) Three-
dimensional surface defined by vector function of two parameters, s(u, v). 

In many cases of interest in structural geology a simpler form of the parametric representation of a 
surface, or of a patch of a surface, may be found such that:

THE TANGENT PLANE, TANGENT VECTOR, AND UNIT NORMAL VECTOR

Because the parametric representation of a surface, s(u,v), describes a vector function of two variable 
parameters, there is a partial derivative associated with each parameter. the partial derivatives of 
s(u,v) with respect to the two parameters are:

Thus, the partial derivative, ds/du, is a vector that is tangent to a u-parameter curve and points in the 
direction of increasing u. Similarly, ds/dv, is a vector that is tangent to a v-parameter curve and points 
in the direction of increasing v. These tangent vectors are not necessarily unit vectors.

The two partial derivatives  of the vector function for a curved surface are used to define the 
parametric representation of planes, P, that are tangent to the surface. In general, the family of 
tangent planes for the surface, s(u, v), are defined as:
 

The first term on the right-hand side is the position vector for the point on the curved surface. The 
second and third terms extend the position vector parallel to the tangent vectors at this point by 
arbitrary distances proportional to the variables h and k. As h and k range over the entire set of real 
numbers, this equation defines all possible
points on the tangent plane.

The tangent plane plays an important role in describing any curved surface. Furthermore, any 
geological surface observed at exposure is approximated



locally with planar elements. These planar elements are tangent planes to the geological surface at 
the point of measurement.

The tangent vector, T, to the arbitrary curve is given by the derivative of the vector function c[u(t), v(t)] 
with respect to the parameter, t.

Because the tangent vector T is linearly dependent upon these two partial derivatives, it also lies in 
the tangent plane. In this way the tangent vector to the surface s(u,v) at an arbitrary point in any 
arbitrary direction is related to the partial derivatives of the parametric representation of the curved 
surface at that point.

The unit normal vector, N, makes a right-handed orthogonal system with the two tangent vectors, 
ds/du and ds/dv and is defined as:

DIKE AND JOINT SURFACES IDEALIZED AS HELICOIDS

A dike in geology is a type of later vertical rock between older layers of rock. 
Technically, it is any geologic body which cuts across: flat wall rock structures, such 
as bedding; massive rock formations, usually igneous in origin.

Observations and mapping of opening fractures in rock, including basaltic dikes 
and joints suggest that the surfaces of some of these fractures can be idealized as helicoids.

The parametric representation of helicoids is as follows:

where v=constant (an angle) and u=constant (a length) are coordinate lines in the parameter plane 
that map onto the u- and v parameter curves on the helicoidal surface.

Fig. 2.7: The patch of a helicoidal surface used to model a fracture

Definitions of some important mathematical terms:



1. Twist of helicoidal surface-   the angle between the reference unit normal, N(0, 0), and the unit 
normal at the point in question along the mid-line, N(0,v).

Therefore the twist angle is equal to the parameter v.

2. Spatial rate of twist- The component of s(0,v) in the z-direction is sz =cv, and this is equal to the z-
coordinate, so dz/dv=c. The spatial rate of twist of the surface is defined as dv/dz=1/c.

According to Fig. 2.7 the x-axis is equivalent to the line of breakdown from a single parent (main) 
fracture to multiple echelon fractures (feather fractures, twist hackle) in the fringe of a joint or dike.

By rigorous mathematical calculations, it was found that rate of twist is nearly constant(nearly). A 
constant rate of twist is consistent with the hypothesis that the hackle approximates a helicoidal 
surface. 

Structural geologists quantify the orientation of a geological surface at an exposure by measuring 
strike and dip or dip and dip direction, and these measurements use the concept of the tangent plane 
at a point on a surface. The tangent vector to an arbitrary curve on the surface lies in the tangent 
plane. The normal vector to the curved surface is equivalent to the pole to a geological surface as 
plotted on a stereogram.

THE FIRST FUNDAMENTAL FORM, ARC LENGTH AND SURFACE AREA

A continuous curved surface is completely described at an arbitrary point in terms of two differential
quantities called the first and second fundamental forms.

The fundamental forms are extremely important and useful in determining the metric properties of a surface, such 
as line element, area element, normal curvature, Gaussian curvature, and mean curvature.

The first fundamental form, I, at an arbitrary point on a curved surface, s(u,v), is a measure of the 
differential arc length of curves lying on the surface and oriented in all possible directions at that
point. The points p(u,v) and p(u+du, v+dv),map onto the curved surface along the curve c[u(t), v(t)]. A 
tangent vector to this arbitrary curve is defined such that:

The first fundamental form, I, is a differential quantity defined as the scalar product of the differential
tangent vector, dc, with itself-

The coefficients in this equation are scalar quantities with particular geometric interpretations. Hence 
they are denoted with the special symbols E, F, and G. Using this notation the first fundamental form 
is written-



The scalar quantities E, F, and G are called the coefficients of the first fundamental form. The 
values of the coefficients depend upon the choice of parameters used to represent the surface, but 
the first fundamental form itself is invariant with respect to this choice.
In this sense I is a property of the surface and plays a fundamental role in defining arc lengths 
on the surface.

The coefficients of the first fundamental form are scalar products of the tangent vectors to the u- and 
v-parameter curve.

The first fundamental form at a point on a surface, f(u,v), is the square of the differential arc length of 
a curve through that point.

The differential tangent vectors at the point p(u, v) in the directions of the u- and v-parameter curves 
are-

These vectors form two sides of a small parallelogram and the differential area, dA, of this planar
figure is used to approximate the area of the curved surface between the adjacent parameter
curves.

Combining these results the differential area of the curved surface is 

The area of the helicoidal surface fracture calculated in the above manner is given as:

This relationship demonstrates that the surface area of n helicoidal fractures, each of half-width b and 
length ωc, is less than the surface area of a single helicoidal fracture of half-width nb and length ωc. 
Taking the n fractures as a model for the twist hackle in the fringe region of a joint the non-intuitive 
result is that the surface area decreases as the number of fractures increases. On this figure each 
curve corresponds to a different twist angle, ω. For a twist angle of 1° (ω= Π/180) the surface area
of ten fractures is 99.5% of that for the single fracture, only marginally less. However, for a twist angle 
of 30° (ω= Π /6) the surface area of ten fractures is 36.1% of that for the single fracture, dramatically 
less. Because the energy required to form a fracture in brittle materials scales with the fracture 
surface area his result shows that the breakdown of joints into hackle with helicoidal shapes is  
consistent with a condition of lesser energy expended during propagation.
 

THE SECOND FUNDAMENTAL FORM, SURFACE SHAPE, AND NORMAL CURVATURE

The second fundamental form provides a measure of the shape at any point on a continuous curved
surface. Consider the arbitrary curve u= u(t), v=v(t) in the parameter plane which maps to the curve 
c[u(t), v(t)] on the curved surface. At an arbitrary point along this curve the differential tangent vector, 



dc, lies in the tangent plane to the surface . The unit vector, N, at this arbitrary point is a function of 
the two parameters u and v, such that the differential is:

The vector dN is a measure of the change in orientation of N with position along the curve on the
surface and, in this sense, it is a measure of the shape of the surface. Also, because N is constant in
magnitude, the vector dN is orthogonal to N and therefore lies in the tangent plane.

  

Fig 2.8: Diagrams to define second fundamental form for a surface. (a) Parameter plane with arbitrary curve 
u=u(t), v =v(t). (b) Surface with curve, c[u(t), v(t)], unit normal vector, N, differential tangent vector, dc, and 
differential normal vector, dN. (c) Surface with osculating plane containing the unit principal normal vector, n(t), 
and curvature vector, k(t). 

Although dc and dN both lie in the tangent plane of the surface , these vectors are not necessarily 
parallel to one another. The shape of the surface in the particular direction specified by dc is 
characterized by the scalar product of the two vectors, dN and dc.

The quantities L, M, and N are functions of the two parameters u and v, and are called the 
coefficients of the second fundamental form of the surface.



The coefficients depend upon the choice of parameters used to represent the surface, but the second 
fundamental form itself is invariant with respect to this choice , and in this sense II is a property of the
surface. II characterizes the changing shape of the surface in all directions at a particular point and 
that the differential parameters du and dv define the direction.

The coefficients of the second fundamental form may be rewritten in a different way that is useful for 
computations. 

One can use the coefficients of the second fundamental form to characterize the shape of a
surface in the vicinity of a particular point as follows:

   
Fig 2.9: Three characteristic shapes of a surface near an arbitrary point: (a) elliptic, (b) parabolic and (c) 
hyperbolic. 

The shape of a curved line is characterized, in part, using the curvature vector, k, and the scalar  
curvature, k=|k|. The osculating plane of a curve is the plane that contains both the unit tangent 
vector, t(t), and the unit principal normal vector, n(t).

The unit normal vector, N may not lie in the osculating plane of the curve. The normal curvature
vector, kn, and the normal curvature, kn, are defined in terms of k(t) and N(u,v) as:

The direction of the unit principal normal vector, n(t), is chosen for consistency along the curve. The 
normal curvature associated with a particular curve on a surface is equal to the curvature of this curve 
times the cosine of the angle between n and N. If the osculating plane of the curve contains the unit 
normal vector for the surface, then n and N are parallel, and kn=k. On the other hand, if the osculating 
plane of the curve is parallel to the tangent plane for the surface, then kn=0. Hence it can be said that 
the curvature of an arbitrary curve at a point on a surface is greater than or equal to the normal 
curvature of the surface in the direction of the curve at that point.



CURVES ON SURFACES PROVIDE THE DIRECTION IN WHICH THE NORMAL CURVATURE OF 
THE SURFACE IS MEASURED, BUT THE NORMAL CURVATURE IS NOT NECESSARILY EQUAL 
TO THE CURVATURE OF THE CURVE.

The curvature, k, at a point on a curve is a unique property of the curve. The normal curvature, kn, at a 
point on a curved surface varies in a smooth and systematic manner with the direction of the tangent 
line through the point of interest, from a maximum value, k1, to a minimum value, k2. These two values 
of normal curvature, k1 and k2, are called the principal normal curvatures.

 

Fig 2.10: Diagrams to define variation of normal curvature with direction at a point on a surface. (a) Angle α 
measured in the tangent plane from direction of maximum principal normal curvature, k1, to direction of normal 
curvature kn. (b) Angle Θo measured in the tangent plane from tangent to u-parameter curve to direction of 
principal normal curvature.

The variation of normal curvature with direction is of the same form for all surfaces with continuous 
second partial derivatives such that:

This relationship is known as Euler’s Theorem and the angle α is measured in the tangent plane 
from the direction of the tangent line corresponding to the curvature k1 to that corresponding to kn.

The directions of the tangent lines associated with the extreme values of normal curvature are
called the principal directions of normal curvature and they are orthogonal. 
Because normal curvature is a property of surface at any point it can be written as a function of the 
fundamental forms. After working out a bit it is found as below- 

The normal curvature may be written in terms of the differentials, du and dv-

PRINCIPAL NORMAL CURVATURES, GAUSSIAN, AND MEAN CURVATURE

Euler’s Theorem  is used to calculate the normal curvature kn in the direction of any line tangent to a 
surface, s(u,v), given the principal normal curvatures, k1 and k2, at a point on the surface. The method 
to calculate the magnitudes of the two principal normal curvatures and the principal directions is 
explained below-

From calculus we know that maximum or minimum values of a function in two variables are found by 
setting the partial derivatives of the function to zero.



When the resulting expressions are evaluated for the principal directions, du0 and dv0, the normal 
curvature takes on extreme values, k0=II/I, satisfying the following linear equations-

      …………(2)

These equations have a simultaneous solution (1, –k0) if the determinant made up of the coefficients
on the left-hand side is zero. As we do so we get the following quadratic equation:

The ratio of the direction numbers, dv0: du0=tanΘ0, and this determines the angles, k0 and k0=Π/2,
between the tangent to the u-parameter curve and the tangent to the principal directions. Arranging 
the terms further we get-

The principal directions for the normal curvature at a point on a surface are found from the above 
equation using the standard formula for the solution of a quadratic equation. The magnitudes of the 
principal normal curvatures, k1 and k2, are found by rearranging (2)  to factor out the two differentials 
du0 and dv0:

These two linear equations have a simultaneous solution (du0, dv0) if the determinant of the 
coefficients of the left side is zero. Expanding the determinant produces a quadratic equation in k0:

 

The first constant, km, is the average of the two principal normal curvatures and is referred to as
the mean principal normal curvature:

The second constant, kg, is the product of the principal curvatures and is called the Gaussian 
curvature:

The sign of kg may be used to distinguish these three non-planar shapes. Taken together, the signs of 
the Gaussian and the mean curvature may be used to categorize surfaces with respect to orientation 
in keeping with geological conventions. This categorization provides a simple way to describe 
geological surfaces using the concepts of differential geometry. 

PHASE 3



3.1 APPLICATION OF DIFFERENTIAL GEOMETRY TO STRUCTURAL GEOLOGY

This includes the examples which provide insights into how differential geometry can be applied to 
problems in structural geology.

CHARACTERISING THE SHAPES OF LINEATIONS ON DISCRETE SURFACES

Lineations are found on discrete geological surfaces such as faults and intrusive contacts.

On a fault, slickenlines should form a systematic pattern that reflects the relative motion of the two 
surfaces during frictional sliding. Of course the direction of relative motion at a point may change as a 
fault develops, leading to overprinting of slickenlines with different orientations. To illustrate the fact 
that slickenlines do vary systematically with position on a fault, and to appreciate some of the 
challenges inherent to the investigation of superficial lineations we turn to a data set from the 
Chimney Rock fault array. The four sets of faults in this region are displayed on the structure contour 
map constructed on the base of the Carmel Formation. Note, for example, that individual contours on 
this map are truncated by the Frenchman Fault. When traced to the north across the fault the sense 
of step is consistently to the east. However, the magnitude of the step decreases toward both 
terminations of this fault. This change in step magnitude suggests that the magnitude of the slip 
decreases from the mid-section of the Frenchman Fault toward the terminations and, indeed, the slip 
must go to zero at the terminations by definition.  

Fig 3.1: Structural contour map of blue-gray limestone unit near base of Carmel Formation illustrating offset by
faults of the Chimney Rock array
    

Exposure of the faults at Chimney Rock are adequate to document the lateral variation in rake of the 
slickenlines over a distance of almost 3kms, but inadequate to document the vertical variation. 

CHARACTERISING THE SHAPES OF FOLDED SURFACES



Fig 3.2: Oblique aerial photograph of the nose of the Emigrant Gap anticline, WY.

The Emigrant Gap anticline is a doubly plunging fold exposed for about 30 km along a northwest–
southeast trend near Casper, Wyoming. Sandstone beds of the Frontier Formation crop out on the 
fold limbs and are continuously exposed around the fold hinge. The top of the lowest-most sandstone
bed (labeled A1) of the Frontier Formation defines a somewhat asymmetric anticlinal surface,  
plunging gently to the north, with approximately planar limbs and a rounded hinge. The arc length of 
the exposed surface is on the order of 500 m, and the amplitude is about 75 m.

On a stereographic projection(fig 3.3), 543 poles to bedding define a great circle (labeled Π), with a 
tighter cluster of poles representing the eastern limb and a broader cluster representing the western 
limb. The pole to the great circle (labelled β) defines an approximate fold axis with trend and plunge of 
345°, 04°.

Fig 3.3: Stereographic projection of 543 poles to Frontier Formation sandstone beds on the Emigrant Gap 
anticline.

The GPS data were used to create a digital model of the surface, despite the limitation that the A1 
sandstone is exposed only over about 25% of the map area. Clearly, sufficient data control is lacking 
to make conclusive statements about the geometry where the surface is not exposed. Eight cross  
sections of the folded surface were used to constrain the shape of the surface (Fig). From these cross 
sections one can infer that the anticline is asymmetric, with the west flank exhibiting steeper dips than 
the east flank, and the hinge is rounded.



       Fig 3.4: (a) Map view of Emigrant Gap anticline with 2529 GPS survey points . (b) Eight profiles of fold shape 
constrained by GPS data.

It is standard practice in structural geology to idealize folds as cylindrical structures. The principal
normal curvatures provide a quantitative measure of the departure from a cylindrical shape. For a 
surface to be perfectly cylindrical one principal curvature must be zero everywhere, and the other 
principal curvature must have the same distribution on every cross section taken perpendicular to the 
fold axis.

Based on the signs of the Gaussian and mean curvatures at every grid point, the surface can be 
decomposed into areas that are locally shaped like one or the other of the six different characteristic
shapes. 

The characterization of folded surfaces using differential geometry will provide new insights 
concerning the process of folding.

FINAL CONCLUSION:

The structures encountered in Earth’s crust are three dimensional with spatial variations in size and 
shape that only can be accounted for using a geometry that involves the spatial derivatives of such 
things as orientation and curvature. Plotting orientation data on a stereographic projection eliminates 
the opportunity to visualize and analyse these spatial changes. Furthermore, to proceed with 
modelling one needs to write boundary conditions that refer explicitly to geometry of surfaces. Finally, 
we now have precise field data on the three-dimensional shape of surfaces from new technology such 
as GPS and we need to know how to describe these surfaces and how to compare them to a model 
result.


