Enumerative Geometry 08 Gromov Witten

Recap

  • Circle \(a \cdot x \cdot x + a \cdot y \cdot y + b \cdot z \cdot z + c \cot x \cdot z + d \cdot y \cdot z =0\) Moduli Space \([a:b:c:d] \in \mathbb{P}^3\). Tangency condition resultant.
  • Moduli Space
  • Parameter Space/variety/scheme/stack for geometric object.
  • Projective Space \(P^n_k\) parametrizes line in \(k^{n+1}\).
  • Grassmannian \(Gr_k(r,n) parametrizes r-line in\)k^{n+1}$$.
  • Quarter plane without interior of origin unit circle parametrize triangle (up to similar).
  • \([a:b:c:d:e:f]\) is \(\mathbb{P}^5\) parametrizes conic \(a \cdot x \cdot x + b \cdot y \cdot y + c \cdot z \cdot z + d \cot x \cdot z + d \cdot y \cdot z =0\).
  • Hilbert Scheme parametrizes all closed subschemes.
    • Hilbert Scheme of \(\mathbb{P}^n\), note \(Hilb(\mathbb{P}^n)\) has many snigularities, but its connected components are projective, correspond to closed subschemes with a Hilbert Polynomial (records degree and more).
    • \(Hilb(\mathbb{P}^2)\) Hilbert polynomial \(2 \cdot n +1\) is isomorphic to moduli space of conics: \(\mathbb{P}^5\).
    • Fano Scheme parametrizes lines in a projective variety.
      • \[F(\mathbb{P}^n)= Gr(2, n+1)\]
      • Counting Lines in projective varieties is counting points in Fano Scheme.
      • Shcemes are varieties with multiplicity points.
      • Chern Class of vector bundles.

QnA

  • Dimension of Moduli Space
    • Intersect condition on moduli space gives constants
      • Count conic passing through 5 points: 5 is the dimension of moduli space of conics.
      • Count conic passing through 5 points: 5 is the dimension of moduli space of lines in \(p^3\) which is \(Gr(2,4)\).
    • Incidence Correspondence
  • Compactify Moduli Space
    • Double line could give non-transversal intersection.
    • Be careful to choose right compactification.

Tomorrow

  • 3264 and all that
  • Moduli space of curves